The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence*

نویسندگان

  • Grzegorz J. Grabe
  • Yue Zhang
  • Michal Przydacz
  • Nathalie Rolhion
  • Yi Yang
  • Jonathan N. Pruneda
  • David Komander
  • David W. Holden
  • Stephen A. Hare
چکیده

Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Nuclear Transport of NF-ĸB p65 by the Salmonella Type III Secretion System Effector SpvD

Salmonella enterica replicates in macrophages through the action of effector proteins translocated across the vacuolar membrane by a type III secretion system (T3SS). Here we show that the SPI-2 T3SS effector SpvD suppresses proinflammatory immune responses. SpvD prevented activation of an NF-ĸB-dependent promoter and caused nuclear accumulation of importin-α, which is required for nuclear impo...

متن کامل

Immunoprotectivity of Salmonella enterica serovar Enteritidis virulence protein, InvH, against Salmonella typhi

Objective(s):Typhoid fever is a dreadful disease of a major threat to public health in developing countries. Vaccination with bacterial immunodominant components such as surface proteins may prove as a potent alternative to live attenuated vaccines. InvH, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry int...

متن کامل

Structure of the catalytic domain of the Salmonella virulence factor SseI

SseI is secreted into host cells by Salmonella and contributes to the establishment of systemic infections. The crystal structure of the C-terminal domain of SseI has been solved to 1.70 Å resolution, revealing it to be a member of the cysteine protease superfamily with a catalytic triad consisting of Cys178, His216 and Asp231 that is critical to its virulence activities. Structure-based analys...

متن کامل

Bacterial UDP-Glucose Hydrolases and P2 Receptor-Mediated Responses to Infection: A Commentary

UDP-glucose hydrolases are a group of relatively little known membrane-bound or periplasmic enzymes found in Salmonella enterica and E. coli. UDP-glucose is an agonist for a specific P2 receptor (P2Y14) found on epithelial cells and cells associated with innate immunity. It is also recognised as a ‘danger signal’. Cells respond to mechanical damage by releasing UDP-glucose which activates P2Y14...

متن کامل

SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice.

Salmonella enterica serovar Typhimurium utilizes a type III secretion system (TTSS) encoded on Salmonella pathogenicity island-2 (SPI2) to promote intracellular replication during infection, but little is known about the molecular function of SPI2-translocated effectors and how they contribute to this process. SseJ is a SPI2 TTSS effector protein that is homologous to enzymes called glycerophos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 291  شماره 

صفحات  -

تاریخ انتشار 2016